

Indian School Al Wadi Al Kabir

Midterm Examination

Class: X Sub: Science (086) Max. Marks: 80 Date: 17/09/2024 Set - II Time: 3 hours

Marking scheme

Q.	Answers	Marks	Total
No.		distribution	
	MCQ		
1.	(c)The chemical composition of the reactants is the same before and after the	1	1
	reaction.		
2.	(c) Mg, CuSO4, MgSO ₄	1	1
3.	(c) (i) and (ii) only	1	1
4.	(d)NaCl, NaHCO ₃ ,Na ₂ CO ₃	1	1
5.	(c) A strong acid and a weak base	1	1
6.	(a) H_3O+ and Cl^-	1	1
7.	(d)Is exothermic and pH of the solution formed is more than 7	1	1
8.	(d) Fig. D	1	1
9.	(b) contract and lens become thicker	1	1
10.	c) Digestion of fats, Digestion of proteins	1	1
11.	d) all of these	1	1
12.	(c) energy and starch	1	1
13.	(c) CFCs; Ozone	1	1
14.	(c) primary consumer to secondary consumer	1	1
15.	b. Malaria parasite	1	1
16.	(c) this eliminates the need of producing plant using seeds	1	1
	Assertion (A) and Reason (R)		
17.	(b) Both A and R are true but R is not the correct explanation of A	1	1
18.	(d) Assertion is false but Reason is true.	1	1
19.	(a) Both A and R are true, and R is the correct explanation of the	1	1
	assertion.		
20.	(d) Assertion is false but Reason is true.	1	1
	TWO MARKS		
21.	$2H_2O \Rightarrow 2H_2(g) + O_2$	1	2
	2AgBr (sunlight)→2Ag + Br ₂	1	
	ZABDI (Sullight) / ZAB T DIZ	1	

22. Absolute refrac	tive index of a medium is defined as the ratio of speed of	1/2	2
light in vacuum	or air to the speed of light in the medium. It is denoted		
by n.			
	$= \frac{\text{Speed of light in air}}{\text{Speed of light in medium}} = \frac{c}{v}$	1/2	
		1/ .1/	
	nds away from the normal	1/2+1/2	
11)B6	ends towards the normal		
	OR		
	arvature is the radius of the sphere from which the	1	
spherical mirror	-		
Since R= +30cm	1		
f=R/2=+30/2=+	-15cm	1/2+1/2	
	irror= convex mirror		
	no atmosphere consisting of air, there would have been	2	2
	sunlight at all. In that case no light from the sky would reyes and the sky would have looked dark and black to		
us.	r cyes and the sky would have looked dark and black to		
24. B		1/2	2
	ine is longer in herbivores than in carnivores because	11/	
	ume plant and grass-based food which is high in	1½	
	e digestion of cellulose takes a long time. The length of ne differs in various animals depending on the food that		
they eat.	me uniters in various animals depending on the rood that		
25. a) Each nephron	is made up of a very small filter, called a glomerulus,	1	2
	d to a tubule. As blood passes through the nephron, fluid		
_	acts are filtered out. Extra fluid is then returned to the		
urine	waste products are concentrated in any extra fluid as		
	of water reabsorbed by nephron depends on two major		
	amount of excess water present in the body. (ii) The	1/2+ 1/2	
	lved waste to be excreted out of the body.		
26. According to the	10 percent law, only 10% of the energy is transferred to each	1+1	2
	n its lower trophic level. If 10,000 joules of energy is available		
_	hen only 1000 joules of energy will be available to the primary		
	ly 100 joules of energy will be available to the secondary		
energy.	nergy available with the tertiary consumer will be 10 joules of		
onergy.	OR		
	n connecting grass, mice, and eagle will be the one in		
_	receives the maximum proportion of energy from		
producers.	a that will be an active offer at a discharge at 12.1.		
,	n that will be mostly affected when a non-biodegradable oduced into the soil is the Eagle. This phenomenon is		
called as Bioma			

	3 MARKS		
27.	(i) it turns milky due to the formation of insoluble calcium	$\frac{1}{2} + 1 + \frac{1}{2}$	3
	carbonate(1/2m)	+ 1	
	$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O(1 \text{ mark})$		
	(ii)If CO2 is passed for long duration through lime water, the white		
	precipitate formed dissolves due to the formation of soluble calcium		
	hydrogen carbonate and the solution becomes clear. (1/2 m)		
	$CaCO_3+H_2O+CO_2 \rightarrow Ca(HCO_3)_2(aq) (1 m)$		
	OR		
	(a) Plaster of Paris. (a) Plaster of Paris.		
	(b) $CaSO_4.2H_2O$ (373K) $\rightarrow CaSO_4.1/2$ $H_2O + 3/2$ H_2O	1+1+1	
	(c) It is used in hospitals for fixing fractures, supporting the bones in the		
	right position. (1+1+1)		
28.	Amphoteric oxide is an oxide that reacts with both acids and bases to	1/2 + 1/2	3
	form salt and water. In other words, it possesses both acidic and basic		
	properties. (1 mark)	1	
	ZnO and Al ₂ O ₃ $(1/2 + 1/2)$		
	$Al_2O_3+6HCl\rightarrow 2AlCl_3+3H_2O$		
	$Al_2O_3+2NaOH+\rightarrow 2NaAl\ O_2 + H_2O$	1	
29.	(a) The ratio of the size of the image to the size of the	1	3
	object is called as magnification.		
	$m = \frac{h_i}{h_o}$		
	h_{σ} .		
	Given, $u = -2 \mathrm{m}$		
	$\frac{1}{4} = \frac{v}{u}$		
	$\frac{1}{4} = \frac{v}{-2}$	1	
	$u = -\frac{1}{2} \text{ m} = -0.5 \text{ m}$		
	2		
	$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$		
	$\left(-\frac{1}{0.5}\right) - \left(\frac{1}{-2}\right) = \frac{1}{f}$		
	$\left(-\frac{1}{0.5}\right) - \left(-2\right) = \frac{1}{f}$		
	$\frac{1}{f} = -\frac{3}{2}$	11/2	
	$f = \left(-\frac{2}{3}\right) \text{m}$	1/2	
	Lens is concave.	1/4	
		1/2	
30.	(a) This is due to the phenomenon of refrection of light. A very of light	1	3
30.	(a) This is due to the phenomenon of refraction of light. A ray of light starting from the lemon kept in water reaches the water-air	1	
	interface and bends away from normal.		
	To the observer, it appears as the light ray is coming from the point		
	above the actual point. This apparent position makes them appear		
	bigger in size.		
	(b) The light ray will travel fastest in medium A because it is the	1	
	medium with least refractive index.	1	
	(c)		
		1	
		-	

	$n_{aw} = \frac{1}{n_{wa}} = \frac{1}{1.33} = 0.75$		
31.	a) Myopia	$\frac{1}{2} + \frac{1}{2}$	3
31.	Elongation of the eyeball	/2 1 /2	3
	Excessive curvature of the eye lens (Any one cause)		
	b) (i) back seat		
	Distant object		
	Image Image is	1	
	formed in front of		
	the retina		
	Retina		
	(ii) front seat.		
	Retina		
	N' Image is formed in		
	the retina	1	
32.	a) Tracheid and vessels are two water conducting hollow tubes present in		3
32.	the vascular tissue called xylem. Xylem in a plant is responsible for		
	transporting water from the roots to other parts of the plant. Water enters		
	continuously into the root xylem by transpiration and the pressure		
	gradient which is formed in the roots of the plant. Transportation of		
	water from the leaves makes a transpiration pull in there which causes	1+1+1	
	the roots to take out water from the ground in order to fill up the vacancy		
	caused.		
	b) Plants do not need to move from one place to another. Movements in		
	a plant are usually at the cellular level and hence a far less amount of		
	energy is required by plants. Animals, on the other hand, need to move		
	from one place to another: in search of food. So, the energy need of		
	animals is higher than of plants.		
	c) Transpiration is the process during which water is lost in the form of		
	water vapor from the internal tissues of the plants. Translocation is the		
	movement of substances such as water, mineral nutrients.		
33.	(a) Upon inhalation, the diaphragm contracts and flattens and the chest	1+1+1	
	cavity enlarges. This contraction creates a vacuum, which pulls air into		
	the lungs		
	(b) The cartilage rings are present in the trachea to prevent it from		
	collapsing. This enables the lumen of the trachea to stay open during		
	breathing.		
	(c)Release of CO2., lime water turns milky white, formation of calcium		
	carbonate 5 MARKS		
24	5 MARKS (1) 7n + Cus O -> 7n 5 O + Cus (1) Morth)	1 + 1/ + 1	5
34.	(i)Zn + CuSO ₄ → ZnSO ₄ +Cu (1Mark)	$1 + \frac{1}{2} + 1$	5
	Displacement reaction (1/2 mark) Define ((1Mark)		
	(i) $2Pb(NO_3)_2(s)\Delta \rightarrow 2PbO(s)+4NO_2(g)+O_2(g)$ (1 mark)	1 + 14 + 1	
	Thermal decomposition reaction (1/2 mark)	$1 + \frac{1}{2} + 1$	
	Define (1 mark)		
	Demo (2 many	1	

		T	
	OR (i) (a) 2 Cu(NO ₃) ₂ (s) + Heat \Rightarrow 2 CuO (s) + 4 NO ₂ (g) + O ₂ (g) (1 mark)	1+1+1+	
	(b) The brown gas is of nitrogen dioxide. (1 mark)	1 + 1	5
	(c) NO ₂ gas reacts with water to produce nitric acid. Thus, its pH range will be		
	less than 7. (1 mark)		
	(ii) $FeSO_4$ (s) + Heat \rightarrow Fe_2O_3 (s) + SO_2 (g) + SO_3 (g) (1 mark)		
	It is a thermal decomposition reaction. (1mark)		
35.	(a) In case I, image is formed between F and C. It is real, inverted, and smaller	1	5
33.	in size.	_	
	(b) In Case II, since, the object is placed at centre of curvature.	1	
	(c) Dentists use concave mirrors to see teeth and other areas in the mouth.	_	
	This is because a concave mirror forms a virtual, erect and enlarged image	1	
		1	
	when the object is placed within focus.		
	(d) Case III can be used as shaving mirror because, when object is placed		
	between P and F, we get virtual, erect and magnified image.	1	
	A'		
	A A		
		1	
	D. D. D.		
	C F B P B'		
	-		
	OR		
	(i) For $u = -60 \text{ cm}$; $v = 20 \text{ cm}$		
	$\frac{1}{f} = \frac{1}{20} + \frac{1}{60}$ (Using $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$)		
	$=\frac{3+1}{60}$		
	$=\frac{4}{60}=\frac{1}{15}$		
	or $f = 15 \mathrm{cm}$		5
	Focal length of the convex lens $= 15 \mathrm{cm}$		
	(b) The set $u = 12$ cm and $v = 70$ cm is incorrect as in all other sets, we		
	get $f = 15$ cm by using the given values of u and v but in this set, the		
	value of f is different.	1	
	(c) Ray diagram for the third set where $u = 30 \text{ cm}$, $v = 30 \text{ cm}$:	1	
	M A		
	\sim \sim \sim \sim \sim		
	$F_2 = 2F_2$		
	$\frac{B_1}{2F_1}$ $\frac{2}{F_1}$ $\frac{2}{B'}$	1	
	C,		
	1-15 cm - N		
	(d) Uses of convex lens are:		
		2	
	1) Convex lens is used in microscopes and magnifying glasses to subject		
	all the light to a specific point.		
	2) Convex lens is used as a camera lens in cameras.		
	3) Convex lens is used in the correction of hypermetropia.		
	(any two)	1	
1		-	

36.	a) In amoeba, splitting of the cell into two during cell division can take place in any plane. Leishmania has a whip like structure at one end of the cell, hence binary fission occurs in a definite orientation in relation to this structure. b)	2	5
	Tentacles Bud	2	
	Figure 8.4 Budding in Hydra		
	c) The sporangia (singular sporangium) are the structures which contain spores of Rhizopus. These spores can develop into new individuals under favorable conditions. Moisture Optimum temperature, Oxygen, Nutrients	1	
	OR		
	Regeneration is the process by which some organisms replace or restore lost or amputated body parts.		
	Figure 8.3 Regeneration in Planaria	2	5
	b) Vegetative propagation is a process in which plants reproduce from stems, <u>roots</u> and <u>leaves</u> . It is a form of <u>asexual reproduction</u> seen in plants ii) It is useful for propagating those plants that do not produce viable seeds or produce a smaller number of seeds. Another advantage of vegetative propagation is that all plants produced are genetically similar enough to the parent plant to have all its characteristics. c) Vegetative propagation, buds produced in the notches along the leaf margin of Bryophyllum fall on the soil and develop into new plants	2	
	2 7 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		1	
	CASE STUDY	-	

27	(1) 77 (2) 77 77 (4) (2 4) (2)	1/ . 1/	1
37.	(i) $X=Cl_2$, $Y=H_2$ (1/2+1/2)	$\frac{1}{2} + \frac{1}{2}$	4
	(ii) $Ca(OH)_2 + Cl_2 \rightarrow CaOCl_2 + H_2O (1 \text{ mark})$	1	
	(iii) (a) Z is a base (1 mark)	1+1	
	(b) When methyl orange is added to substance Z, that is NaOH, it changes		
	its colour to yellow. (1 mark)		
	OR		
	(a) Concentrated aqueous solution of sodium chloride.	1+1	
	(b) NaHCO ₃ , CaOCl ₂ (1+1 mark)		
38.	(i) Rainbow	1	4
	(ii) Colour 'B' has higher speed than that of colour 'A'.		
	factor speed of light depends- wavelength	1	
	(iii) The splitting of white light into its seven constituent colours, if white light		
	is passed through prism is called dispersion.		
	Light rays of different colours (or different wavelengths) travel with	1+1	
	different		
	speeds in a refractive medium like glass. So each colour is refracted (or		
	deviated) by a different angle with the result that seven colours are spread out to		
	form a spectrum.		
	OR		
	A		
		2	
	Ray of white		
	Ray light		
	Prism B I		
	Frish		
	Figure: Dispersion of white light by a glass prism.		
39.	a)		4
	i) Veins have valves to prevent the backflow of blood because the blood		
	in veins flow.	1/2	
	ii) pulmonary artery is the only artery which carries impure or	1/2	
	deoxygenated blood		
	h) The wenticles of the heart beautiful and the state of the heart beautiful and the state of th		
	b) The ventricles of the heart have thicker muscular walls than the atria. This is because blood is pumped out of the heart at greater pressure from		
	This is because blood is pumped out of the heart at greater pressure from these chambers compared to the atria.	1	
	mese chambers compared to the atria.	1	
		1mark for	
		diagram	

	Pulmonary — Pulmonary vein from lungs	1mark for labelling	
	Vena cava —————————————————————————————————		
c)	Figure 6.11 Schematic representation of transport and exchange of oxygen and carbon dioxide	1/2 + 1/2 +1	
	OR		
, .	y reptiles have three-chambered hearts, Fishes, on ally two chambers to their hearts.		
	ight side and the left side of the heart is useful to		
keep oxygenated and d	eoxygenated blood from mixing. Such separation at supply of oxygen to the body.		